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Fluctuation-induced orientational correlations in polymer blends and diblock copolymer melts
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In this paper we study the possibility of fluctuation-induced orientational correlations in interacting
polymer systems. We show how orientational correlations can arise solely from isotropic density fluc-
tuations and the screened monomer potentials in the melt. No direct anisotropic interactions are intro-
duced. The case of homopolymer and diblock copolymer blends are considered. For the diblock copoly-
mers the fluctuation-induced anisotropy has a large effect on the shape of the molecule, whereas for
homopolymers it is small and not important at the critical point.

PACS number(s): 05.70.Fh, 61.25.Hq, 36.20.—r

I. INTRODUCTION

The phase behavior of block copolymer melts has been
studied extensively during the last decade. The classic
paper of Leibler [1] on the collective properties of such
systems showed that they differ significantly from poly-
mer blends. The principal difference is that the phase
separation occurs at a finite wave vector k*, whereas in
homopolymer blends it occurs at zero wave vector.

A more recent result [2] which also clearly shows the
difference between homopolymer and copolymer blends
was the analytic study by Vilgis and Brereton of the
behavior of a tagged chain in a homopolymer blend. It
was shown how the individual chains shrink as the
phase-separation point of the blend is approached. Simi-
lar results have also been obtained in computer simula-
tions by Sariban and Binder [3]. Essentially the same cal-
culation has been done for diblock polymers [4], where it
was shown that the individual blocks of the chain shrink.
The total radius of gyration increases due to the strong
repulsion between the blocks. This result has also been
verified numerically [5-7], where it was shown that
significant stretching of the chains already occurs before
the micro-phase-separation transition (MST). In fact, at
the critical point it was found that about 50% of the
chain stretching had already occured. This result was
found for all molecular weights and gives the master
curve shown in Fig. 1.

Simple scaling arguments show that in the strong
segregation limit (in the lamellar case) the typical size of
the chains is given by [8]

R ~N?3 (1.1)
i.e., significantly larger than the Gaussian value R ~N'/2,

In this paper we will show that the stretching of the
block copolymer chains near the micro-phase-separation
transition creates additional orientational correlations.
We study this problem using only isotropic excluded
volume interactions and in contrast to Ref. [9] do not ex-
plicitly introduce any orientational interactions. Similar
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results have been found in the NMR properties of
stretched network chains with only isotropic excluded-
volume interactions present [10]. The main result of the
paper is a general formalism from which orientational
correlations, which depend purely on the structure fac-
tors and the individual monomer potential, can be calcu-
lated.

II. EFFECTIVE HAMILTONIAN

The starting point for the model proposed in this paper
is the Edwards Hamiltonian for an 4-B blend or block
copolymer melt. Both cases can be treated in the same
framework. The Hamiltonian can be written as
BH({R(5)})=Hieee ({Ro(8)}) + Hine({Ry(5)]) , 2.1)
where Hy, . ({R,(s)}) describes the free chains, and in the
Edwards continuum chain notation it is given by
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FIG. 1. The effective chain stretching for different molecular
weights of the block copolymer is shown. The net effect of the
stretching in the simulated range of the molecular weight is of
the same order.

3031 ©1994 The American Physical Society



3032 T. A. VILGIS, A. WEYERSBERG, AND M. G. BRERETON 49

oR/

Hfree({Ra(s)})szI [
2
, (2.2)

B

3 Np
42
212 %fo

where R 2(s) is the chain configuration of chain a and
species A. N, is the degree of polymerization of the
species A and [ the step length, which will be considered
to be equal for all species. The sum over the chain label
a runs over all chains.

The interacting term H;,({R,(s)}) is more con-
veniently written in terms of the s microscopic density
fluctuations p( {R,(s)}),pE({R ,(5)}) as

Hin ({Ry(s)})=+ 2 Vilpdoy
T2 Vilplpl + 2 ViPpipte
(2.3)
where
p(R(s))= z f ds " (2.4)
a=1

and similarly for the B polymer chain. npA is the number
of A-type chains.

The interactions V44(RJ(s)—Rj(s')), etc., are purely
isotropic and are a priori not sensitive to orientational de-
tails. Nevertheless, in this paper we would like to investi-
gate orientational-dependent properties, for example, the
behavior of the density of end-to-end vectors of a binary
blend or block copolymer as a phase separation is ap-
proached. We will show that orientational effects are in-
duced even in isotropic systems.

The simplest orientational-dependent collective vari-
able that can be defined is the local tangent vector density

u(r) [11]

u’(r)= f ds‘ 8(r—Rg(s), o=(4,B)
(2.5)
or in terms of the Fourier transform
ORY | ikre
=3 f "ds e 2.6)

In the limit k —O0 the bond-vector density is just the sum
of the end-to-end vectors, i.e.,

u— > R,(N), 2.7
where R, (N) is the chain end-to-end vector of chain a.

In this paper we will be solely concerned with calculat-
ing the bond-vector correlation functions such as

k) =(ud ud,) , (2.8)
and similarly for T4, T 25, etc.

The standard procedure (see, for example, Refs.
[11,12]) whereby this is achieved is to replace the distri-
bution over the free chain coordinates RZ(s),R2(s) by a
distribution over the collective variables p!,pf,us, uf,

f HdR;ingexp[Hfree { Ra} ]

—>fHdp uduf

Xexp[ —Hy({pd,p,uf,uf})], 2.9)

where exp{ —H,({p,pE,u,ul})} is essentially the Jaco-
bian of the transformation. Some of the details of this
transformation are given in Appendix A. The partition
sum for the system can be written as

z= [ [1dpddpfduidulexpl —BH({p{,pf,uf uf})] .
k

(2.10)

The effective Hamiltonian H({pg,pg,uf,uf}) is found to
be a general quadratic function of the collective variables.
Then, since we are only concerned with correlation func-
tions involving the bond-vector variables {uy,uf}, the
density fluctuations can be integrated out, leaving an
effective Hamiltonian quadratic in these variables. The
result is that the bond-vector correlation functions
r4(k),T4B(k),T'?8(k) can be calculated immediately
and are given in terms of unperturbed correlation func-
tions by the matrix equation

T 28(k)=T%k)8 5 — %y;‘o(k)TU"B(k)yfo(k) , @11
A,
where
o <u|fll/_‘k>0 <ul‘(4u€k>0
L i (ufufk>0 <ufu€k>0
WA (A B 2.12)
(ufpido (ufp?ydo
k)= B 4 B B
= Cugp?y)o CugpZydg

The underlines below the symbols are used to denote
composition vectors and matrices (A4, B), where bold-face
characters stand for the Cartesian vectors and matrices
(x,9,2). The matrix y°k) is written in the following for-
mally as a vector and in the Appendix is shown how this
has to be understood. Indeed, the equation can be writ-
ten such that y°(k) can be used as a vector. U(k) is the
matrix of fluctuation-induced screened monomer poten-
tials. It is related to the direct interactions V44,V 48, y BB
by the inverse matrix equation [5]

U 'kx)=Fr 'k)+S%k) ,

where S 0(k) is the matrix of the bare concentration fluc-
tuations

(2.13)

(pdpddo pipZido
(pep2ido (pipZido

and { ), is an unperturbed average taken with respect to
the free chains described by Hg..({R,(s)}) in Eq.

S%k)= (2.14)
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(2.1,2.2). The structure of Eq. (2.11) clearly demonstrates that although we have not introduced a direct (nematic) in-
teraction between the bond-vector variables, nevertheless a correlation has been induced by the matrix U of effective
monomer potentials.

The matrix equation for U can be readily solved. For example in the homopolymer case where S95 =0, the results of

Ref. [2] are recovered, i.e.,

e VAA_{(VAB)Z_VAAVBB}SgB

1+ VA4S + VEES Dy — (VAP — V44V BBy S0 Spp

Similar expressions hold for 4<>B. Equation (2.15) is
greatly simplified by using the incompressibility con-
straint. This is achieved by setting

yAA=pyBB=y_, 0 ,

(VAB)Z__ VAAVBB=2XFV , (2.16)

where Y is the Flory interaction parameter for blends.
In the limit ¥ — oo, the effective monomer potential U ,,
becomes

1—2x 43S55(k)

. A .17)
SAA(k)+SBB(k) 2XFSAA(k)SBB(k)

Up(k)=

The denominator function in (2.17) is the familiar expres-
J

1—2xpSpp(k)

(2.15)

-
sion that leads to the enhancement of the concentration
fluctuations and eventually to the phase separation [13].
In the present expression, the screened potentials are
enhanced and in turn amplify the bond-vector correlation
functions.

The potentials in Egs. (2.11) and (2.12) have an unphys-
ical singularity that signals the breakdown of the mean-
field approximation. By applying a similar “‘renormaliza-
tion” approach as in Ref. [14] this case can be regularized
also. Although the validity of our results breaks down at
the Ginsburg temperature and below, nevertheless simu-
lations [5,6] at high densities confirm these results fairly.

For completeness and later use we already give the
screened monomer potentials for the diblock polymer
melt, where S ;70 (in the limit of incompressibility),

U (k)=

SO A(K)+ S (k)+25%p(k)—2xF{S% A (K)S3p(K)—S%p %K)}

(2.18a)

Corresponding expressions can be obtained by interchanging A and B and the potential between different types of

monomers is given by [5,7]

1+2x8% (k)
U p(k)= XFo 4B

It is shown that the strong repulsion of different mono-
mers expressed in Eq. (2.18b) significantly stretches the
chain before the phase separation [5-7,15]. In the next
section, explicit results for the orientational effects in-
duced in the bond-vector correlation functions by con-
centration fluctuations will be presented. A simple
Gaussian model will be used for both the homopolymer
and diblock copolymer systems. Although the model is
quite simple it contains already the essential effects we
would like to point out. Of course, it can be refined in a
similar sense as given in Refs. [7,14], but these extensions
do not alter the general conclusion as we will show sepa-
rately.

III. RESULTS

A. Homopolymers

The main result of this paper for the orientational-
dependent bond-vector correlation functions is given by

Eq. (2.11) and can be written as
L(k)=C%k)—y%k)TU(k)y%k) . 3.1)

After some algebra this can be written—for the A

89, (k)+S95(k)+289%5(k)—2x {89, (K)SSp(k)—S%5%k)}

(2.18b)

[
chains—as

(ufut)=(utat)—(up) U, (k){p*u?) , 3.2)

where the screened monomer potential U (k) is given by
Eq. (2.18a). To evaluate these expressions the following
unperturbed correlation functions are needed:

ri=C), yi,=h?), s =",
(3.3)

and A<B. These are evaluated in an appendix, where it
is shown that reasonable approximations are given by

b4
N '+k2/12°
yoak)=—1iks9,(k),

r9=b1,

S%u(k)=
(3.4)
where b is the effective monomer step length and is pro-

portional to I. The screened monomer potential U44(k)
can be rewritten to a more suitable form,
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1—2xSpp(k)
Uk = g 28 - 3.5)
S (kIS (k) X+ & (bk )

where

1
+____
Nabs Npés

X= XF - (3.6)

Using these approximations the bond-vector correlation
function for, e.g., the A chains is given by
M4(k)=b21+1kkS9, (k)U ,,(k)SY 4 (k)
S%4(k) | 1—2x£S35(k)
S9p(k) | X+L(bk)?*

=b’1+1kk 3.7

One immediate feature of the result (3.1) for L(k) is that
there are orientational couplings between different spatial
directions. For example,

[24(k)= Lk sin*(6)sin(¢ )cos(¢)
SO%,(k) | 1—2xpSpp(k)
SPs(k) | x+L(bk)?

, (3.8)

where 6,¢ are the polar angles between k and the z axis.
It is seen that the orientational correlations produced by
the interactions are always proportional to k%. This fac-
tor is responsible for the difference between homopoly-
mer and diblock systems. The phase transition for homo-
polymers occurs at k=0 when Y=0. However, the
singularity k ~2 in the screened monomer potential is can-
celled by the k? factor and Fﬁ;’(k) remains finite. In oth-
er words, there is no instability in the bond-vector corre-
lation function at the phase-separation point. The
behavior of the k dependent part of I‘ff(k) for the sym-
metric case N, =N and a range of Flory parameters is
shown in Fig. 2.
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FIG. 2. The wave-vector-dependent singular part of the
orientational correlation function for a blend of different poly-
mers. The correlation function does not show a singularity at
the phase transition at zero wave vector. The full line corre-
sponds to the case yr=0, the dotted line corresponds to
X=(xo—xr)/ )(o=% and the broken line corresponds to the sys-
tem when X=0.1.

In block copolymer melts the situation is different.
Through the permanent connection of the 4 and B part
of the chain the micro phase separation takes place at
finite wave vectors k* as has been shown by Leibler [1],
and significant effects are then expected. This is exam-
ined in the next section.

B. Diblock copolymers

The bond-vector correlation function for, say, the A-
chain part of the diblock is given from Eq. (3.1) as

(utu?)=(utut);—(u'p) U, (k){p*u?)
_<uAPB)UBB(k)<pBuA) .

The screened monomer potentials for diblock copolymers
are more conveniently written from Eq. (2.18) in the form

1-2xpSps(K)  H(K)
U, k)= .
a4(k) 50 HK)—2x, (3.10)
and similarly for Ugy where
S§(k)
H(k)=—; 5 0 2 (3.11)
SAA(k)SBB(k)_SAB (k)
and
S2=5% A(k)+S%5(k)+25%p(k) . (3.12)

For diblock copolymers the block structure factor SY5 is
not zero and for a Gaussian chain it can be readily found
as

4

o {1—exp(—k2b?N 4 /6)—exp(—k?b*Ny /6)

S p=

+exp(—k2b*[N 4 +Ny1/6)} . (3.13)

In practice it is not convenient to parametrize this term;
instead Ohta and Kawasaki [8] have given an accurate
parametrization of the function H (k) as

1

H(k)=FA(NA,NB)+kZB(NA,NB)+)?, (3.14)
where
AN | Ny)=——
4N Ny
19(1\1,,,N,9)=(—Aﬁ)—2 , (3.15)
f=ws{NA /(N ,+Ng)} .

(N Ng)?

s{N,/(N,+Ng)} is a numerical factor given by Ohta
and Kawasaki, e.g., for the symmetric case N ,=Npg,
s(.5)=0.9. The bond-vector correlation function for the
A chain can be written as
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H(k) (S X 7T [S95(k)]?
M4(k)=b21+kk—————— 1[1—2xpSpp(k) | ————+[1—2xpS% (k) | ——— 3.16
Ho—2y, |25 (k)] S%(k) [1=2xrS44(k)] S9(k) (.16

The denominator function has the form

1 _ 1

H(k)—2xp 1 _ ’
XF pA+sz+2(x—xp)

(3.17)

which becomes unstable at a finite k. Unlike the homo-
polymer case this instability is no longer canceled by the
k? [see Eq. (3.8)] factor in the numerator and the bond-
vector correlations also show an instability for the di-
block copolymer at the microphase separation. The gen-
eral behavior is shown in Fig. 3.

IV. DISCUSSION

The main result of this paper is that in certain polymer
systems orientational correlations can be induced by fluc-
tuations. It is important to realize that no orientational-
dependent interaction has been introduced from the be-
ginning. The effective monomer potential mediated these
new correlations, which become critical at mesoscopic
length scales. This is of great importance especially for
block copolymers, where the phase separation takes place
at finite wave vectors. As has been shown earlier, the
chains already stretch significantly before the microphase
separation occurs, because the strong repulsion of the
monomer potential between different monomers and the
connectivity between the different blocks is in one chain.
These effective monomer potentials induce strong orien-
tational correlations and produce nontrivial effects.
These can already be seen in the Gaussian approximation

k

FIG. 3. Same as Fig. 2 but for diblock copolymers. It shows
that the orientational correlation function has a peak at the crit-
ical wave vector k*. As the MST is approached, a singularity
occurs.

I
for the micro-phase-separation. Indeed the Gaussian ap-
proximation is not crucial and effective renormalized
theories show that the orientational effects persist beyond
this technical limitation.

The effect, however, is not important in polymer blends
near their macrophase separation since the different kinds
of polymers are not connected. This is consistent with
the observation that the chains in blends shrink near the
macroscopic phase separation [2,3,14]. It is interesting to
use these predictions to analyze NMR data along the
lines discussed in Ref. [10], where the corresponding
NMR functions have been calculated to detect local
orientations near the MST.

It is also important to realize that first the initial
excluded-volume potentials and the fluctuations which
are completely isotropic quantities are responsible for the
induced anisotropy. This clearly shows two important
features: The first is that the random-phase approxima-
tion (RPA) is not bound to isotropic systems, and second-
ly anisotropies are not necessarily only the result of an-
isotropic interactions.
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APPENDIX A: TRANSFORMATION FROM
CHAIN VARIABLES TO COLLECTIVE VARIABLES

The collective density variable p°(r), where the super-
script o represents the species 4 or B, together with the
collective bond-vector density u °(r) are introduced into
the partition sum (2.1-2.3) by means of the identities

N ik-R%
Jdpis |pi-3 [ dse™ e |=1, (A1)
and
o |lo Ny | ORG | ikrg
fdllk uk—zfo dS[ asa =1.
(A2)

The Dirac 8 functions are parametrized by fields @y, ¥, to
give the identities in the following form:

D
Japi [ Zf;“

N, ik-RY
expidy [pt— 3 [ "as ™ |1,
a

(A3)

and
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o DV N, | 3Rg
fd“kf_—’(zﬂ)3exl’l¢k -y fo ds{ 3 }exp

The partition sum is then written as

Z= [DR(s) [ Dp, [ D, [ Dy [ Duyexp l—BH({R,B,Q,ng})+i§ (P tup vy} |-

ik-RY
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=1. (A4)

(AS)

The standard procedure is now to perform the R (s) functional integral, using the second moment approximation, sym-

bolically written as

deexp{—BH[R]}=exp[—gdeHZ{R} } .

(A6)

The result is that (A5) can be written as the Legendre transform of an effective Hamiltonian H ({py$y,uy, ¥ ), where

BH({py, b8 ¥} )= 3 ($eS%(K)b _+pV(k)p_ + LUK+ 29 (1,97 4)]
P

A shorthand notation has been introduced, i.e.,

H= @ 60), b =W we=dud) .

(A7)

(A8)

such that the underlines below the symbols correspond to the species vectors and the bold-face symbols to the Cartesian

vectors.

The correlation functions § 0(k),go(k ), and yy are defined as

S%(k) S95(k)

SOk)={p(k)p(—k)) =
2 prep S3a(k) S%p(k)

>

Lo(k)=<ul{u—k )0 ’

YoK)=(ufp_y) ,

(A9)

(A10)
(A11)

and ( ), is an unperturbed average taken with respect to the free chains described by Hg..({R,(s)}) in Eq. (2.1). The
@ Uy integrals are standard Gaussians. They are manipulated to give

Z=fanD£kexp{—BH({£,n})} ,

where

(A12)

H({p,u})= 3 (p =¥ L)~ u-{S%)— 72D Y2} (o =72 L0 " 'w) '+ S uLiu o+ 3 pekp-c -
k k

Equation (A13) provides all information in the Gaussian
approximation on the physical variable density and
bond-vector density needed for further consideration.
The integral over p, is done to the partition sum which
leads to the bond-vector correlation function given by Eq.
(2.11) from the main text.

APPENDIX B: CORRELATION FUNCTIONS

To be more specific, a block-copolymer melt is con-
sidered in more detail. The bare structure matrix S%(k) is
known [see Eq. (2.12)] as well as the monomer interac-
tions. The missing matrix y°k) is given below. It has
the form =

11 11 11 12 12 12
. Yeory vy vy vy vy
Y (k)= 02! 02! 02! 022 022

o2 , (B1)
Yx Yy Yz Yx 'Vy Yz

where the individual elements are given by

~

k

I

N, .N,
g [

o,7=1,2 and v=x,y,z where ¢ is the volume fraction
of species 0. It is more convenient to evaluate Eq. (4.2)
in terms of discrete bond vectors [10], i.e.,

2

ARY | Lo

—_ elk'R (s)—R(s )ds dS' , (Bz)
ds

SN N /N
y2“=¢"2 > <b,§fexp ik- be
i=lj=fN=1 n=1
N
- 3 o)),
n=fN+1 0

(B3)

where the average has to be taken over the discrete
Wiener measure

N
Po(ib,,])—“:Nexp[E:;—z— PR H ] . (B4)
n—1
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It is clear from simple geometry that

yY’=0 Vo#r, v=x,p,z. (B5)
Therefore the (6 X2) matrix (B1) reduces to
oll
" (k) 0
01 ) —
(k)= , (B6)
L 0 1™k
where 'yon(k) is the vector
Yon(k)=(‘}’2“,‘}’2”,‘}’(£l) . (B7)

Thus the matrix Zo(k) can be written as a vector

11 11 11 2 22 22
=30 v g g

The individual y’s themselves can be represented as

ygaa(k)=—ikvpaa(k) y V=X,Y,Z2, (B8)
where p(k) is
Nf k212
piuk)= 3 exp|— li—j| (B9a)
i>j=1 6

and
(1—fINf k212
puk)= 3 exp|— li—jl |, (B9b)
i>j=1 6

which are roughly one-half of the value of the Debye
function.

For block copolymers the fluctuation-induced correla-
tions are then given by the two typical values

k) =12+kp(k)U(k) (B10a)
for the diagonal element and
TAk)=k k,p5.(k)U*(k) (B10b)

for the off-diagonal element. Moreover, a correlation be-
tween the species 4 and B is given by
TAP(k) =k k,p 44(k)U *2(K)ppp(k) , (B10c)

since p 45 =0.
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